

- Does using a nightlight affect a child ation in the year 2030? . Will an increase in th speed limits reduce highway fatality rates? risk of shark attack in the United States? \cdot "quick" polls? Do right-hande relive stress and lead to more satisfyin How likely are you to pass a test by guessin Do college students really gain weight during the Can we accurately predict the U.S. population tax result in fewer people smoking? • Do lower highway spee or women have better memory of where they left something? - Does drinking tea increase the chances of conception? - Does the internet increase loneliness and depression? • Does using - Can we accurately predict the U.S. population in the year 2030 rease in the cigarette tax result in fewer people smoking? • Do lower highway speed limits redur ality rates? Does smoking increase the likelihood of divorce? • How great is risk of shark attack States? • Is smoking more dangerous for women? • How accurate are television or internet "quick ere a relationship between baldness and heart attacks? . Will preventing artery clog prevent memor ght-handed people live longer than left-handed people? * Does pet ownership relive stress and lea fying marriages? . How random is the shuffle feature on the iPod? • How likely are you to pass

Case Studies and Examples

Chapter 1

Case Study 1.1 Who AreThose Speedy Drivers? 2
Case Study 1.2 Safety in the Skies? 3
Case Study 1.3 Did Anyone Ask Whom You've Been Dating? 3
Case Study 1.4 Who Are Those Angry Women? 4
Case Study 1.5 Does Prayer Lower Blood Pressure? 4
Case Study 1.6 Does Aspirin Reduce Heart Attack Rates? 5
Case Study 1.7 Does the Internet Increase Loneliness and Depression? 6
Case Study 1.8 Did Your Mother's Breakfast Determine Your Sex? 7

Chapter 2

Example 2.1 Seatbelt Use by Twelfth-Graders 20
Example 2.2 Lighting the Way to Nearsightedness 21
Example 2.3 Humans Are Not Good Randomizers 22
Example 2.4 Revisiting Example 2.2: Nightlight and Nearsightedness 23
Example 2.5 Right Handspans 25
Example 2.6 Annual Compensation for Highest Paid CEOs in the United States 26
Example 2.7 Ages of Death of U.S. First Ladies 27
Example 2.8 Revisiting Example 2.7: Histograms for Ages of Death of U.S. First Ladies 30

Example 2.9 Big Music Collections 31
Example 2.10 Median and Mean Quiz Scores 38
Example 2.11 Example 2.9 Revisited: Median and Mean Number of Songs on Student iPods or MP3 Players 38
Example 2.12 Will "Normal" Rainfall Get Rid of Those Odors? 38
Example 2.13 Range and Interquartile Range for Fastest Speeds Ever Driven 41
Example 2.14 Fastest Driving Speeds for Men 41
Example 2.15 Example 2.9 Revisited: Five-Number Summary and Outlier Detection for Songs on iPod or MP3 Player 43
Example 2.16 Tiny Boatmen 45
Example 2.17 The Shape of British Women's Heights 46
Example 2.18 Calculating a Standard Deviation 48
Example 2.19 Example 2.17 Revisited: Women's Heights and the Empirical Rule 49

Chapter 3

Example 3.1 Height and Handspan 70
Example 3.2 Driver Age and the Maximum Legibility Distance of Highway Signs 71
Example 3.3 The Development of Musical Preferences 72
Example 3.4 Heights and Foot Lengths of College Women 73
Example 3.5 Describing Height and Handspan with a Regression Line 75
Example 3.6 Writing the Regression Equation for Height and Handspan 76
Example 3.7 Regression for Driver Age and the Maximum Legibility Distance of Highway Signs 78
Example 3.8 Prediction Errors for the Highway Sign Data 80
Example 3.9 Calculating the Sum of Squared Errors 81
Example 3.10 The Correlation Between Handspan and Height 83
Example 3.11 The Correlation Between Age and Sign Legibility Distance 84
Example 3.12 Left and Right Handspans 84
Example 3.13 Verbal SAT and GPA 85
Example 3.14 Age and Hours of Television Watching per Day 85
Example 3.15 Hours of Sleep and Hours of Study 85
Example 3.16 How Much Variability in Vision is Explained by Age? 86
Example 3.17 Height and Foot Length of College Women 90
Example 3.18 Earthquakes in the Continental United States 91
Example 3.19 Does It Make Sense? Height and Lead Feet 92
Example 3.20 Does It Make Sense? U.S. Population Predictions 93
Case Study 3.1 A Weighty Issue 96

Chapter 4

Example 4.1 Age and Main News Source 115
Example 4.2 Smoking and Divorce 116
Example 4.3 Gender and Rating of Quality of Public Education 117
Example 4.4 Sex and the Risk of Childhood Asthma 119
Example 4.5 Example 4.4 Revisited: Odds Ratio for Sex and Childhood Asthma 120
Example 4.6 The Risk of a Shark Attack 121
Example 4.7 Case Study 1.2 Revisited: Disaster in the Skies? 121
Example 4.8 Dietary Fat and Breast Cancer 121
Case Study 4.1 Is Smoking More Dangerous for Women? 122
Example 4.9 Example 2.2 Revisited: Sleep-Time Lighting, Child Vision, and Parents' Vision 123

Example 4.10 U.S. Unemployment in 2009 and 1982123
Example 4.11 Blood Pressure and Oral Contraceptive Use 124
Example 4.12 Case Study 1.6 Revisited: Aspirin and the Risk of a Heart Attack 125
Example 4.13 Sex and Opinion about Banning Cell Phone Use while Driving 127
Example 4.14 Example 4.13 Revisited: Expected Counts and Chi-Square Statistic for Sex and Opinion about Banning Cell Phone Use while Driving 129
Example 4.15 Breast Cancer Risk Stops Hormone Replacement Therapy Study 130
Example 4.16 Case Study 1.6 Revisited: Aspirin and Heart Attacks 131
Case Study 4.2 Drinking, Driving, and the Supreme Court 133

Chapter 5

Example 5.1 Do First Ladies Represent Other Women? 150
Example 5.2 Do Penn State Students Represent Other College Students? 150
Example 5.3 The Importance of Religion for Adult Americans 154
Example 5.4 Do You Want to Fly to the Moon? 154
Example 5.5 Choosing a Random Sample of Colleges in the United States 158
Example 5.6 Representing the Heights of British Women 158
Example 5.7 An ABC News Poll on Parental Permissiveness 164
Example 5.8 The Current Population Survey 164
Example 5.9 Which Scientists Trashed the Public? 168
Example 5.10 A Meaningless Poll 168
Example 5.11 Haphazard Sampling 169
Case Study 5.1 The Infamous Literary Digest Poll of 1936169
Example 5.12 Laid Off or Fired? 171
Example 5.13 Most Voters Don't Lie, but Some Liars Don't Vote 172
Example 5.14 Why Weren't You at Work Last Week? 172
Example 5.15 Is Happiness Related to Dating? 173
Example 5.16 When Will Adolescent Males Report Risky Behavior? 173
Example 5.17 Politics Is All in the Wording 174
Example 5.18 Teenage Sex 174
Example 5.19 The Unemployed 175
Case Study 5.2 No Opinion of Your Own? Let Politics Decide 177

Chapter 6

Example 6.1 Case Study 1.5 Revisited: What Confounding Variables Lurk behind Lower Blood Pressure? 194
Example 6.2 The Fewer the Pages, the More Valuable the Book? 194
Case Study 6.1 Lead Exposure and Bad Teeth 195
Case Study 6.2 Kids and Weight Lifting 197
Example 6.3 Revisiting Case Study 6.2: Randomly Assigning Children to Weight-Lifting Groups 199
Case Study 6.3 Quitting Smoking with Nicotine Patches 201
Example 6.4 Blocked Experiment for Comparing Memorization Methods 202
Case Study 6.4 Baldness and Heart Attacks 205
Example 6.5 Will Preventing Artery Clog Prevent Memory Loss? 208
Example 6.6 Case Study 6.3 Revisited: Interacting Variables in the Nicotine Patch Study 209
Example 6.7 Dull Rats 210
Example 6.8 Real Smokers with a Desire to Quit 211
Example 6.9 Do Left-Handers Die Young? 211

Chapter 7

Case Study 7.1 A Hypothetical Story: Alicia Has a Bad Day 222
Example 7.1 Probability of Male versus Female Births 224
Example 7.2 A Simple Lottery 225
Example 7.3 The ProbabilityThat Alicia Has to Answer a Question 225
Example 7.4 The Probability of Lost Luggage 225
Example 7.5 Night-lights and Myopia Revisited 226
Example 7.6 Days per Week of Drinking Alcohol 228
Example 7.7 Probabilities for Some Lottery Events 229
Example 7.8 The Probability of Not Winning the Lottery 229
Example 7.9 Mutually Exclusive Events for Lottery Numbers 230
Example 7.10 Winning a Free Lunch 230
Example 7.11 The Probability That Alicia Has to Answer a Question 231
Example 7.12 Probability That a Teenager Gambles Differs for Boys and Girls 231
Example 7.13 Probability a Stranger Does Not Share Your Birth Date 233

Example 7.14 Prizes in Cereal Boxes 233
Example 7.15 Roommate Compatibility 234
Example 7.16 Probability of Either Two Boys or Two Girls in Two Births 235
Example 7.17 Winning the Lottery 236
Example 7.18 Probability That a Randomly Selected Ninth-Grader Is a Male and a Weekly Gambler 236
Example 7.19 Probability That Two Strangers Both Share Your Birth Month 236
Example 7.20 Will Shaun's Friends BeThere for Him? 237
Example 7.21 Choosing Left-Handed Students 238
Example 7.22 The Probability of an A Grade on Final Given an A Grade on Midterm 239
Example 7.23 Optimism for Alicia-She Is Probably Healthy 240
Example 7.24 Two-Way Table for Teens and Gambling 241
Example 7.25 The Probability of Guilt and Innocence Given a DNA Match 242
Example 7.26 Alicia's Possible Fates 243
Example 7.27 The Probability That Alicia Has a Positive Test 243
Example 7.28 Tree Diagram forTeens and Gambling 244
Example 7.29 Getting All the Prizes 245
Example 7.30 Finding Gifted ESP Participants 246
Example 7.31 Two George D. Brysons 249
Example 7.32 Identical Cars and Matching Keys 249
Example 7.33 Winning the Lottery Twice 250
Example 7.34 Sharing the Same Birthday 250
Example 7.35 Unusual Hands in Card Games 251
Case Study 7.2 Doin' the iPod Random Shuffle 252

Chapter 8

Example 8.1 Random Variables at an Outdoor Graduation or Wedding 266
Example 8.2 It's Possible to Toss Forever 266
Example 8.3 Probability an Event OccursThree Times in Three Tries 267
Example 8.4 Waiting on Standby 267
Example 8.5 Probability Distribution Function for Number of Courses 268
Example 8.6 Probability Distribution Function for Number of Girls 269
Example 8.7 Example 8.6 Revisited: Graph of pdf for Number of Girls 270
Example 8.8 Example 8.6 Revisited: Cumulative Distribution for the Number of Girls 271
Example 8.9 Example 8.6 Revisited: A Mixture of Children 271
Example 8.10 Probabilities for Sum of Two Dice 271
Example 8.11 Gambling Losses 273
Example 8.12 California Decco Lottery Game 274
Example 8.13 Stability or Excitement-Same Mean, Different Standard Deviations 275
Example 8.14 Mean Hours of Study for the Class Yesterday 276
Example 8.15 Probability of Two Wins in Three Plays 279
Example 8.16 Excel Calculations for Number of Girls in Ten Births 280
Example 8.17 Guessing Your Way to a Passing Score 280
Example 8.18 IsThere Extraterrestrial Life? 282
Case Study 8.1 Does Caffeine Enhance the Taste of Cola? 282
Example 8.19 Time Spent Waiting for the Bus 283
Example 8.20 Example 8.19 Revisited: Probability That the Waiting Time Is 5 to 7 Minutes 284
Example 8.21 College Women's Heights 286
Example 8.22 Probabilities for Math SAT Scores 288
Example 8.23 Example 8.21 Revisited: z-Score for a Height of 62 Inches 290
Example 8.24 Example 8.21 Revisited: Probability That Height Is Less Than 62 Inches 291
Example 8.25 Example 8.22 Revisited: Using Table A. 1 to Find Probabilities for Math SAT Scores 291
Example 8.26 The 75th Percentile of Systolic Blood Pressures 293
Example 8.27 The Number of Heads in 60 Flips of a Coin 294
Example 8.28 Normal Approximation to Binomial Distribution with $n=300$ and $p=.3295$
Example 8.29 Political Woes 296
Example 8.30 Guessing and Passing a True-False Test 296
Example 8.31 Will Meg Miss Her Flight? 300
Example 8.32 Can Alison Ever Win? 301
Example 8.33 Donations Add Up 302
Example 8.34 Strategies for Studying When You Are Out of Time 302

Chapter 9

Example 9.1 The "Freshman 15" 320
Example 9.2 Mean Hours of Sleep for College Students 325
Example 9.3 Scratch and Win (or Lose) Lotteries 329
Example 9.4 Possible Sample Proportions Favoring a Candidate 330

Example 9.5 Caffeinated or Not? 331
Example 9.6 Men, Women, and the Death Penalty 335
Example 9.7 Hypothetical Mean Weight Loss 336
Example 9.8 Hypothetical Mean Weight Loss Revisited 339
Example 9.9 Suppose That There Is No "Freshman 15" 342
Example 9.10 Case Study 1.1 Revisited: Who Are the Speed Demons? 345
Example 9.11 UnpopularTV Shows 347
Example 9.12 Standardized Mean Weights 349
Example 9.13 The Long Run for the Decco Lottery Game 351
Example 9.14 California Decco Losses 352
Example 9.15 Winning the Lottery by Betting on Birthdays 354
Example 9.16 Constructing a Simple Sampling Distribution for the Mean Movie Rating 355
Case Study 9.1 Do Americans Really Vote When They Say They Do? 357

Chapter 10

Example 10.1 Case Study 1.3 Revisited: Teens and Interracial Dating 379
Example 10.2 The Pollen Count Must Be High Today 381
Example 10.3 Is There Intelligent Life on Other Planets? 384
Example 10.4 Would You Return a Lost Wallet? 385
Example 10.5 Example 10.3 Revisited: 50\% Confidence Interval for Proportion Believing That Intelligent Life Exists Elsewhere 388
Example 10.6 Winning the Lottery and Quitting Work 389
Example 10.7 The Gallup Poll Margin of Error for $n=1000390$
Example 10.8 Example 10.2 Revisited: Allergies and Really Bad Allergies 391
Example 10.9 Age and Using the Internet as a News Source 393
Example 10.10 Do You Always Buckle Up When Driving? 394
Example 10.11 Which Drink Tastes Better? 397
Case Study 10.1 Extrasensory Perception Works with Movies 398
Case Study 10.2 Nicotine Patches versus Zyban ${ }^{\circledR} 398$
Case Study 10.3 What a Great Personality 399

Chapter 11

Example 11.1 Pet Ownership and Stress 416
Example 11.2 Mean Hours per Day That Penn State Students Watch TV 417
Example 11.3 Do Men Lose More Weight by Diet or by Exercise? 418
Example 11.4 Finding the t^{*} Values for 24 Degrees of Freedom and 95% or 99\% Confidence Intervals 420
Example 11.5 Are Your Sleeves Too Short? The Mean Forearm Length of Men 423
Example 11.6 How Much TV Do Penn State Students Watch? 423
Example 11.7 What Type of Students Sleep More? 425
Example 11.8 Approximate 95\% Confidence Interval forTVTime 428
Example 11.9 ScreenTime Computer versusTV 430
Example 11.10 Meditation and Anxiety 432
Example 11.11 The Effect of a Stare on Driving Behavior 435
Example 11.12 Parental Alcohol Problems and Child Hangover Symptoms 437
Example 11.13 Confidence Interval for Difference in Mean Weight Losses by Diet or Exercise 439
Example 11.14 Pooled t-Interval for Difference Between Mean Female and Male Sleep Times 440
Example 11.15 Sleep Time with and without the Equal Variance Assumption 442
Case Study 11.1 Confidence Interval for Relative Risk: Case Study 6.4 Revisited 444
Case Study 11.2 Premenstrual Syndrome? Try Calcium 445

Chapter 12

Example 12.1 Does a Majority Favor a Lower Limit for Drunk Driving? 461
Example 12.2 Are Side Effects Experienced by FewerThan 20\% of Patients? 463
Example 12.3 Mean Normal Body Temperature for Men and Women 464
Example 12.4 Stop the Pain Before It Starts 465
Example 12.5 Example 12.4 Revisited: p-Value for Comparing the Painkiller and Control Groups 466
Example 12.6 A Jury Trial 468
Example 12.7 Errors in Medical Tests 469
Example 12.8 Calcium and the Relief of Premenstrual Symptoms 470
Example 12.9 Medical Tests Revisited 471
Example 12.10 Example 12.1 Revisited: Does a Majority Favor a Lower BAC Limit for Drivers? 473
Example 12.11 The Importance of Order in Voting 476
Example 12.12 Example 12.2 Revisited: Do FewerThan 20\% Experience Medication Side Effects? 477

Example 12.13 A Two-Sided Test: If Your Feet Don't Match, Is the Right One More Likely to Be Longer or Shorter? 479
Example 12.14 Case Study 10.1 Revisited: A Test for Extrasensory Perception 481
Example 12.15 What Do Men Care about in a Date? 482
Example 12.16 Example 12.11 Revisited: Rejecting the Hypothesis of Equal Choices 484
Example 12.17 The Prevention of Ear Infections 486
Example 12.18 How the Same Sample Proportion Can Produce Different Conclusions 491
Example 12.19 Birth Month and Height 493
Example 12.20 Case Study 1.7 Revisited: The Internet and Loneliness 494
Example 12.21 Power and Sample Size for a Survey of Students 494
Case Study 12.1 An Interpretation of a p-Value Not Fit to Print 496

Chapter 13

Example 13.1 Normal Body Temperature for Young Adults 513, 515, 519
Example 13.2 Why Can't the Pilot Have a Drink? 522
Example 13.3 Do You Know How Tall You Really Are? 524
Example 13.4 The Effect of a Stare on Driving Behavior 526, 527
Example 13.5 A Two-Tailed Test of Television Watching for Men and Women 529
Example 13.6 Misleading Pooled t-Test for Television Watching for Men and Women 532
Example 13.7 Legitimate Pooled t-Test for Comparing Male and Female Sleep Time 533
Example 13.8 Mean Daily Television Hours of Men and Women 534
Example 13.9 Ear Infections and Xylitol 535
Example 13.10 Rental Costs When You Graduate 537
Example 13.11 Kids and Weight Lifting 538
Example 13.12 Loss of Cognitive Functioning 539
Example 13.13 Could Aliens Tell That Women Are Shorter? 541
Example 13.14 Normal Body Temperature 542
Example 13.15 The Hypothesis-Testing Paradox 542
Example 13.16 Planning a Weight-Loss Study 543
Case Study 13.1 Beat the Heat with a Frozen Treat 546

Chapter 14

Example 14.1 Handspan and Height Revisited 565
Example 14.1 (cont.) Residuals in the Handspan and Height Regression 565
Example 14.2 Mean and Deviation for Height and Handspan Regression 567
Example 14.3 Relationship between Height and Weight for College Men 570
Example 14.4 R^{2} for Heights and Weights of College Men 571
Example 14.5 Driver Age and Highway Sign-Reading Distance 571
Example 14.6 Hypothesis Test for Driver Age and Sign-Reading Distance 573
Example 14.7 95\% Confidence Interval for Slope between Age and Sign-Reading Distance 574
Example 14.8 Is Pulse Rate Related to Weight? 575
Example 14.9 Predicting When Someone Can Read a Sign 577
Example 14.10 Estimating Mean Weight of College Men at Various Heights 579
Example 14.11 Checking Conditions 1 to 3 for the Weight and Height Problem 582
Example 14.12 Chug-Time and Weight 584
Case Study 14.1 A Contested Election 585

Chapter 15

Example 15.1 Ear Infections and Xylitol Sweetener 600
Example 15.2 With Whom Do You Find It Easiest to Make Friends? 601
Example 15.3 Calculation of Expected Counts and Chi-Square for the Xylitol and Ear Infection Data 603
Example 15.4 p-Value Area for the Xylitol Example 605
Example 15.5 Using Table A. 5 for the Xylitol and Ear Infection Problem 605
Example 15.6 A Moderate p-Value 606
Example 15.7 A Tiny p-Value 606
Example 15.8 Making Friends 607
Example 15.9 Sex of Student and Car Accidents 608
Example 15.10 Sex of Driver and Drinking before Driving 611
Example 15.11 Age and Tension Headaches 612
Example 15.12 Sheep, Goats, and ESP 612
Example 15.13 Butterfly Ballots 614
Example 15.14 Asthma Prevalence overTime 616
Example 15.15 The Pennsylvania Daily Number 618
Case Study 15.1 Do You Mind If I Eat the Blue Ones? 620

Chapter 16

Example 16.1 Classroom Seat Location and Grade Point Average 636
Example 16.2 Application of Notation to the GPA and Classroom Seat Sample 637
Example 16.3 Assessing the Necessary Conditions for the GPA and Seat Location Data 639
Example 16.4 Occupational Choice and Testosterone Level 639
Example 16.5 The p-Value for the Testosterone and Occupational Choice Example 641
Example 16.6 Pairwise Comparisons of GPAs Based on Seat Locations 642
Example 16.7 Comparison of Weight-Loss Programs 645
Example 16.8 Analysis of Variation among Weight Losses 646
Example 16.9 Top Speeds of Supercars 647
Example 16.10 95\% Confidence Intervals for Mean Car Speeds 649
Example 16.11 Drinks per Week and Seat Location 650
Example 16.12 Kruskal-Wallis Test for Alcoholic Beverages per Week by Seat Location 651
Example 16.13 Mood's Median Test for the Alcoholic Beverages and Seat Location Example 653
Example 16.14 Interaction Effect on Time to Complete Exam 654
Example 16.15 Happy Faces and Restaurant Tips 655
Example 16.16 You've Got to Have Heart 655
Example 16.17 Two-Way Analysis of Variance for Happy Face Example 657

Chapter 17

Example 17.1 Playing the Lottery 675
Example 17.2 Surgery or Uncertainty? 675
Example 17.3 Fish Oil and Psychiatric Disorders 676
Example 17.4 "Go, Granny Go" or "Stop, Granny, Stop?" 677
Example 17.5 When Smokers Butt Out Does Society Benefit? 678
Example 17.6 Is It Wining or Dining That Helps French Hearts? 679
Example 17.7 Give Her the Car Keys 680
Example 17.8 Lifestyle Statistics from the Census Bureau 681
Example 17.9 In Whom Do We Trust? 682

Supplemental Topic 1

Example S1.1 Random Security Screening
Example S1.2 Betting Birthdays for the Lottery
Example S1.3 Customers Entering a Small Shop
Example S1.4 Earthquakes in the Coming Year
Example S1.5 Emergency Calls to a Small Town Police Department
Example S1.6 Are There Illegal Drugs in the Next 5000 Cars?
Example S1.7 Calling On the Back of the Class

Supplemental Topic 2

Example S2.1 Normal Human Body Temperature
Example S2.2 Heights of Male Students and Their Fathers
Example S2.3 Estimating the Size of Canada's Population
Example S2.4 Calculating T+ for a Sample of Systolic Blood Pressures
Example S2.5 Difference Between Student Height and Mother's Height for College Women
Example S2.6 Comparing the Quality of Wine Produced in Three Different Regions

Supplemental Topic 3

Example S3.1 Predicting Average August Temperature
Example S3.2 Blood Pressure of Peruvian Indians

Supplemental Topic 4

Example S4.1 Sleep Hours Based on Sex and Seat Location
Example S4.2 Pulse Rates, Sex, and Smoking
Example S4.3 Nature Versus Nurture in IQ Scores
Example S4.4 Happy Faces and Restaurant Tips Revisited
Example S4.5 Does Smoking Lead to More Errors?

Supplemental Topic 5

Example S5.1 Stanley Milgram's "Obedience and Individual Responsibility" Experiment
Example S5.2 Janet's (Hypothetical) Dissertation Research
Example S5.3 Jake's (Hypothetical) Fishing Expedition
Example S5.4 The Debate over Passive Smoking
Example S5.5 Helpful and Harmless Outcomes from Hormone Replacement Therapy
Case Study S5.1 Science Fair Project or Fair Science Project?

Mind on Statistics

Mind on Statistics

Fifth Edition

Jessica M. Utts
University of California, Irvine
Robert F. Heckard
Pennsylvania State University

- CENGAGE
 Learning

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by ISBN\#, author, title, or keyword for materials in your areas of interest.

Mind on Statistics, Fifth Edition

Jessica M. Utts and Robert F. Heckard
Product Director: Liz Covello
Senior Project Team Manager: Richard Stratton
Senior Product Manager: Molly Taylor
Senior Content Developer: Jay Campbell
Content Coordinator: Cynthia Ashton
Product Assistant: Danielle Hallock
Media Developer: Andrew Coppola
Marketing Development Manager: Ryan Ahern
Senior Marketing Manager: Gordon Lee
Content Project Manager: Alison Eigel Zade
Senior Art Director: Linda May
Rights Acquisitions Specialist: Shalice Shah-Caldwell

Manufacturing Planner: Sandee Milewski Production Service: Graphic World Inc.
Text and Cover Designer: Rokusek Design
Compositor: Graphic World Inc.
Cover credits for images from Shutterstock.com: ©islavicek/Shutterstock.com ©irin-k/Shutterstock.com © Dabarti CGI/Shutterstock.com ©srekap/Shutterstock.com ©olavs/Shutterstock.com

Cover images from www.lostandtaken.com/ gallery are Courtesy of Caleb Kimbrough.
© 2015, 2012 Cengage Learning
WCN: 02-200-203
ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means, graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at Cengage Learning Customer \& Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions.

Further permissions questions can be emailed to permissionrequest@cengage.com.

Library of Congress Control Number: 2013945592
ISBN-13: 978-1-285-46318-6
ISBN-10: 1-285-46318-8

Cengage Learning

200 First Stamford Place, 4th Floor
Stamford, CT 06902
USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

For your course and learning solutions, visit www.cengage.com.
Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com.

Instructors: Please visit http://login.cengage.com and log in to access instructor-specific resources.

To Bill Harkness-energetic, generous, and innovative educator, guide, and friend-who launched our careers in statistics and continues to share his vision.
and

To our students, from whom we continue to learn, and who teach us how to be better teachers.

Brief Contents

1 Statistics Success Stories and Cautionary Tales 1
2 Turning Data into Information 14
3 Relationships Between Quantitative Variables 68
4 Relationships Between Categorical Variables 112
5 Sampling: Surveys and How to Ask Questions 148
6 Gathering Useful Data for Examining Relationships 190
7 Probability 220
8 Random Variables 264
9 Understanding Sampling Distributions: Statistics as Random Variables 316
10 Estimating Proportions with Confidence 376
11 Estimating Means with Confidence 412
12 Testing Hypotheses about Proportions 460
13 Testing Hypotheses about Means 510
14 Inference about Simple Regression 562
15 More about Inference for Categorical Variables 598
16 Analysis of Variance 634
17 Turning Information into Wisdom 670

Contents

Preface xiii
1 Statistics Success Stories and Cautionary Tales 1
1.1 What Is Statistics? 1
1.2 Eight Statistical Stories with Morals 2
1.3 The Common Elements in the Eight Stories 7
In Summary Box 8
Key Terms 9
Exercises 9
2 Turning Data into Information 14
2.1 Raw Data 15
2.2 Types of Variables 17
2.3 Summarizing One or Two Categorical Variables 20
2.4 Exploring Features of Quantitative Data with Pictures 24
2.5 Numerical Summaries of Quantitative Variables 37
2.6 How to Handle Outliers 44
2.7 Bell-Shaped Distributions and Standard Deviations 46
Applets for Further Exploration 52
Key Terms 54
In Summary Boxes 54
Exercises 54
3 Relationships Between Quantitative Variables 68
3.1 Looking for Patterns with Scatterplots 70
3.2 Describing Linear Patterns with a Regression Line 74
3.3 Measuring Strength and Direction with Correlation 82
3.4 Regression and Correlation Difficulties and Disasters 89
3.5 Correlation Does Not Prove Causation 94
Applets for Further Exploration 97
Key Terms 99
In Summary Boxes 99
Exercises 100
4 Relationships Between Categorical Variables 112
4.1 Displaying Relationships Between Categorical Variables 113
4.2 Risk, Relative Risk, and Misleading Statistics about Risk 118
4.3 The Effect of a Third Variable and Simpson's Paradox 123
4.4 Assessing the Statistical Significance of a 2×2 Table 124
Applets for Further Exploration 134
Key Terms 136
In Summary Boxes 136
Exercises 136
5 Sampling: Surveys and How to Ask Questions 148
5.1 Collecting and Using Sample Data Wisely 149
5.2 Margin of Error, Confidence Intervals, and Sample Size 152
5.3 Choosing a Simple Random Sample 156
5.4 Additional Probability Sampling Methods 159
5.5 Difficulties and Disasters in Sampling 166
5.6 Pitfalls in Asking Survey Questions 170
Applets for Further Exploration 178
Key Terms 179
In Summary Boxes 179
Exercises 180
6 Gathering Useful Data for Examining Relationships 190
6.1 Speaking the Language of Research Studies 191
6.2 Designing a Good Experiment 196
6.3 Designing a Good Observational Study 205
6.4 Difficulties and Disasters in Experiments and Observational Studies 207
Key Terms 212
In Summary Boxes 212
Exercises 212
7 Probability 220
7.1 Random Circumstances 221
7.2 Interpretations of Probability 223
7.3 Probability Definitions and Relationships 228
7.4 Basic Rules for Finding Probabilities 233
7.5 Conditional Probabilities and Bayes' Rule 239
7.6 Using Simulation to Estimate Probabilities 245
7.7 Flawed Intuitive Judgments about Probability 247
Applets for Further Exploration 253
Key Terms 254
In Summary Boxes 254
Exercises 254
8 Random Variables 264
8.1 What Is a Random Variable? 265
8.2 Discrete Random Variables 268
8.3 Expectations for Random Variables 273
8.4 Binomial Random Variables 277
8.5 Continuous Random Variables 283
8.6 Normal Random Variables 285
8.7 Approximating Binomial Distribution Probabilities 294
8.8 Sums, Differences, and Combinations of Random Variables 298
Applets for Further Exploration 304
Key Terms 306
In Summary Boxes 306
Exercises 306
9 Understanding Sampling Distributions: Statistics as Random Variables 316
9.1 Parameters, Statistics, and Statistical Inference 317
9.2 From Curiosity to Questions about Parameters 319
9.3 SD Module 0: An Overview of Sampling Distributions 324
9.4 SD Module 1: Sampling Distribution for One Sample Proportion 328
9.5 SD Module 2: Sampling Distribution for the Difference in Two Sample Proportions 333
9.6 SD Module 3: Sampling Distribution for One Sample Mean 336
9.7 SD Module 4: Sampling Distribution for the Sample Mean of Paired Differences 341
9.8 SD Module 5: Sampling Distribution for the Difference in Two Sample Means 344
9.9 Preparing for Statistical Inference: Standardized Statistics 346
9.10 Generalizations beyond the Big Five 351
Applets for Further Exploration 357
Key Terms 359
In Summary Boxes 360
Exercises 360
10 Estimating Proportions with Confidence 376
10.1 CI Module 0: An Overview of Confidence Intervals 377
10.2 CI Module 1: Confidence Intervals for Population Proportions 383
10.3 CI Module 2: Confidence Intervals for the Difference in Two Population Proportions 392
10.4 Using Confidence Intervals to Guide Decisions 396
Applets for Further Exploration 400
Key Terms 402
In Summary Boxes 402
Exercises 402
11 Estimating Means with Confidence 412
11.1 Introduction to Confidence Intervals for Means 413
11.2 CI Module 3: Confidence Intervals for One Population Mean 421
11.3 CI Module 4: Confidence Intervals for the Population Mean of Paired Differences 429
11.4 CI Module 5: Confidence Intervals for the Difference in Two Population Means (Independent Samples) 434
11.5 Understanding Any Confidence Interval 444
Applets for Further Exploration 447
Key Terms 448
In Summary Boxes 448
Exercises 449
12 Testing Hypotheses about Proportions 460
12.1 HT Module 0: An Overview of Hypothesis Testing 462
12.2 HT Module 1:Testing Hypotheses about a Population Proportion 473
12.3 HT Module 2: Testing Hypotheses about the Difference in Two Population Proportions 486
12.4 Sample Size, Statistical Significance, and Practical Importance 491
Applets for Further Exploration 497
Key Terms 499
In Summary Boxes 499
Exercises 499
13 Testing Hypotheses about Means 510
13.1 Introduction to Hypothesis Tests for Means 511
13.2 HT Module 3: Testing Hypotheses about One Population Mean 512
13.3 HT Module 4: Testing Hypotheses about the Population Mean of Paired Differences 521
13.4 HT Module 5: Testing Hypotheses about the Difference in Two Population Means (Independent Samples) 525
13.5 The Relationship Between Significance Tests and Confidence Intervals 534
13.6 Choosing an Appropriate Inference Procedure 536
13.7 Effect Size 540
13.8 Evaluating Significance in Research Reports 545
Applets for Further Exploration 548
Key Terms 550
In Summary Boxes 550
Exercises 550
14 Inference about Simple Regression 562
14.1 Sample and Population Regression Models 563
14.2 Estimating the Standard Deviation for Regression 569
14.3 Inference about the Slope of a Linear Regression 572
14.4 Predicting y and Estimating Mean y at a Specific x 576
14.5 Checking Conditions for Using Regression Models for Inference 581
Applets for Further Exploration 587
Key Terms 589
In Summary Boxes 589
Exercises 589
15 More about Inference for Categorical Variables 598
15.1 The Chi-SquareTest forTwo-Way Tables 599
15.2 Methods for Analyzing 2×2 Tables 610
15.3 Testing Hypotheses about One Categorical Variable:Goodness-of-Fit617
Applets for Further Exploration 621
Key Terms 622
In Summary Boxes 623
Exercises 623
16 Analysis of Variance 634
16.1 Comparing Means with an ANOVA F-Test 635
16.2 Details of One-Way Analysis of Variance 644
16.3 Other Methods for Comparing Populations 650
16.4 Two-Way Analysis of Variance 654
Applets for Further Exploration 658
Key Terms 660
In Summary Boxes 660
Exercises 660
17 Turning Information into Wisdom 670
17.1 Beyond the Data 671
17.2 Transforming Uncertainty Into Wisdom 674
17.3 Making Personal Decisions 674
17.4 Control of Societal Risks 677
17.5 Understanding Our World 679
17.6 Getting to Know You 681
17.7 Words to the Wise 683
In Summary Boxes 685
Exercises 685
Appendix of Tables 689
References 697
Answers to Selected Odd-Numbered Exercises 701
Index 723

1 Additional Discrete Random Variables

S1.1 Hypergeometric Distribution
S1.2 Poisson Distribution
S1.3 Multinomial Distribution
Key Terms
Exercises

2 Nonparametric Tests of Hypotheses

S2.1 The Sign Test
S2.2 TheTwo-Sample Rank-Sum Test
S2.3 The Wilcoxon Signed-RankTest
S2.4 The Kruskal-Wallis Test
Key Terms
Exercises
3 Multiple Regression
S3.1 The Multiple Linear Regression Model
S3.2 Inference about Multiple Regression Models
S3.3 Checking Conditions for Multiple Linear Regression
Key Terms
Exercises
4 Two-Way Analysis of Variance
S4.1 Assumptions and Models forTwo-Way ANOVA
S4.2 Testing for Main Effects and Interactions
Key Terms
Exercises

5 Ethics

S5.1 Ethical Treatment of Human and Animal Participants
S5.2 Assurance of Data Quality
S5.3 Appropriate Statistical Analyses
S5.4 Fair Reporting of Results
Key Terms
Exercises

Preface

A Challenge

Before you continue, think about how you would answer the question in the first bullet, and read the statement in the second bullet. We will return to them a little later in this preface.

- What do you really know is true, and how do you know it?
- The diameter of the moon is about 2160 miles.

What Is Statistics, and Who Should Care?

Because people are curious about many things, chances are that your interests include topics to which statistics has made a useful contribution. As written in Chapter 17, "information developed through the use of statistics has enhanced our understanding of how life works, helped us learn about each other, allowed control over some societal issues, and helped individuals make informed decisions. There is almost no area of knowledge that has not been advanced by statistical studies."

Statistical methods have contributed to our understanding of health, psychology, ecology, politics, music, lifestyle choices, business, commerce, and dozens of other topics. A quick look through this book, especially Chapters 1 and 17, should convince you of this. Watch for the influences of statistics in your daily life as you learn this material.

How Is This Book Different? Two Basic Premises of Learning

We wrote this book because we were tired of being told that what statisticians do is boring and difficult. We think statistics is useful and not difficult to learn, and yet the majority of college graduates we've met seemed to have had a negative experience taking a statistics class in college. We hope this book will help to overcome these misguided stereotypes.

Let's return to the two bullets at the beginning of this preface. Without looking, do you remember the diameter of the moon? Unless you already had a pretty good idea or have an excellent memory for numbers, you probably don't remember. One premise of this book is that new material is much easier to learn and remember if it is related to something interesting or previously known. The diameter of the moon is about the same as the air distance between Atlanta and Los Angeles, San Francisco and Chicago, London and Cairo, or Moscow and Madrid. Picture the moon sitting between any of those pairs of cities, and you are not likely to forget the size of the moon again. Throughout this book, new material is presented in the context of interesting and useful examples. The first and last chapters (1 and 17) are exclusively devoted to examples
and case studies, which illustrate the wisdom that can be generated through statistical studies.

Now answer the question asked in the first bullet: What do you really know is true, and how do you know it? If you are like most people, you know because it's something you have experienced or verified for yourself. It is not likely to be something you were told or heard in a lecture. The second premise of this book is that new material is easier to learn if you actively ask questions and answer them for yourself. Mind on Statistics is designed to help you learn statistical ideas by actively thinking about them. Throughout most of the chapters there are queries titled Thought Questions. Thinking about these questions will help you to discover and verify important ideas for yourself. Most chapters have a section called "Applets for Further Exploration" that will guide you through hands-on activities and present you with a "Challenge Question." Working through the applets in those sections will help you actively engage with the material. We encourage you to think and question, rather than simply read and listen.

New to This Edition

- New Case Studies and Examples were written for the new edition. Data in examples, case studies, and exercises also have been updated to the latest information available.
- Many new figures that help illustrate concepts have been added.
- Most chapters have a new section called "Applets for Further Exploration" that accompany applets on the course website. Students are guided through a process of hands-on exploration, and then presented with a "Challenge Question" to solidify their understanding of the concepts.
- Chapter 7 (Probability) has been reorganized to focus on the use of simple tools for understanding probability and solving probability problems.
- The number of In Summary boxes has been increased, and the boxes are placed more consistently throughout the chapters.
- The language has been tightened and simplified whenever possible.

Text Features

Chapters 9 to 13, which contain the core material on sampling distributions and statistical inference, are organized in a modular, flexible format. There are six modules for each of the topics: sampling distributions, confidence intervals, and hypothesis testing. The first module presents an introduction and the remaining five modules each deal with a specific parameter, such as one mean, one proportion, or the difference in two means. Chapter 9 covers sampling distributions, Chapters 10 and 11 cover confidence intervals, and Chapters 12 and 13 cover hypothesis testing.

This structure emphasizes the similarity among the inference procedures for the five parameters discussed. It allows instructors to illustrate that each procedure covered is a specific instance of the same process. We recognize that instructors have different preferences for the order in which to cover inference topics. For instance, some prefer to first cover all topics about proportions and then cover all topics about means. Others prefer to first cover everything about confidence intervals and then cover everything about hypothesis testing. With the modular format, instructors can cover these topics in the order they prefer.

To aid in the navigation through these modular chapters, the book contains color-coded, labeled tabs that correspond to the introductory and parameter modules. The table below, also found in Chapter 9, lays out the color-coding system as well as the flexibility of these new chapters. In addition, the table is a useful course planning tool.

Parameter	$\begin{gathered} \text { Chapter 9: } \\ \text { Sampling } \\ \text { Distributions (SD) } \end{gathered}$	Chapter 10: Confidence Intervals (CI)	Chapter 11: Confidence Intervals (CI)	Chapter 12: Hypothesis Tests (HT)	Chapter 13: Hypothesis Tests (HT)
0. Introductory	SD Module 0 Overview of sampling distributions	CI Module 0 Overview of confidence intervals		HT Module 0 Overview of hypothesis testing	
1. Population Proportion (p)	SD Module 1 SD for one sample proportion	CI Module 1 Cl for one population proportion		HT Module 1 HT for one population proportion	
2. Difference in two population proportions $\left(p_{1}-p_{2}\right)$	SD Module 2 SD for difference in two sample proportions	CI Module 2 Cl for difference in two population proportions		HT Module 2 HT for difference in two population proportions	
3. Population mean (μ)	SD Module 3 SD for one sample mean		CI Module 3 Cl for one population mean		HT Module 3 HT for one population mean
4. Population mean of paired differences (μ_{d})	SD Module 4 SD for sample mean of paired differences		CI Module 4 Cl for population mean of paired differences		HT Module 4 HT for population mean of paired differences
5. Difference in two population means $\left(\mu_{1}-\mu_{2}\right)$	SD Module 5 SD for difference in two sample means		CI Module 5 Cl for difference in two population means		HT Module 5 HT for difference in two population means

To add to the flexibility of topic coverage, Supplemental Topics 1 to 5 on discrete random variables, nonparametric tests, multiple regression, two-way ANOVA, and ethics are now available for use in both print and electronic formats. Instructors, please contact your sales representative to find out how these chapters can be custom published for your course.

Student Resources: Tools for Learning

There are a number of tools provided in this book and beyond to enhance your learning of statistics.

Tools for Conceptual Understanding

Thought Questions appear
throughout each chapter to encourage active thinking and questioning about statistical ideas. Hints are provided at the bottom of the page to help you develop this skill.

THOUGHT QUESTION 2.4 Redo the bar graph in Figure 2.4 using counts instead of percentages. The necessary data are given in Table 2.3. Would the comparison of frequency of myopia across the categories of lighting be as easy to make using the bar graph with counts? Generalize your conclusion to provide guidance about what should be done in similar situations.*
*HINT: Which graph makes it easier to compare the percentage with myopia for the three groups? What could be learned from the graph of counts that isn't apparent from the graph of percentages?

NEW! Applets for Further

Exploration sections provide opportunities for in-class or independent hands-on exploration of key statistical concepts. The applets that accompany this feature can be found on the book's companion website.

Supplemental Notes boxes

provide additional technical discussion of key concepts.

UPDATED! Relevant Examples
form the basis for discussion in each chapter and walk you through reallife uses of statistical concepts.

APPLETS FOR FURTHER EXPLORATION

For each of the applets, follow the instructions for what to do and what to notice, then try to answer the Challenge question. Additional instructions and questions are given at the applet website, http://www.cengage.com/statistics/Utts5e.
Applet 5.1: Simple Random Sampling in Action
What to Do: Press the "Sample" button and watch as a random sample of 10 stick figures is chosen from the picture. The results will include the mean height and the percent female in the sample. Take multiple samples without pressing the "Start Over" button. Press the "Show Results" button.

What to Notice: The blue stick figures represent women and the red stick figures represent men. The heights of the stick figures vary, and when you choose a sample you are shown the heights of the stick figures vary, and when you choose a sample you are shown the
percent female and the mean height for the 10 individuals selected. For the population, percent female and the mean height for the 10 individuals selected. For the population,
the mean height is 68 inches and the percent female is 55%. Notice that the percent the mean height is 68 inches and the percent female is 55%. Notice that the percent
female in the sample can only be multiples of 10% and so can never equal the populafemale in the sample can only be multiples of 10% and so can never equal the popula-
tion value of 55%. Notice that the mean heights for the samples vary considerably, but tion value of 55%. Notice that the mean heigh
they should be close to 68 inches fairly often.

Challenge Question: Explain whether you would you expect the relationship between the mean height and the percent of females in the samples to be a positive association or a negative association. Is that what you observed when you took multiple samples and examined the results?

SUPPLEMENTAL NOTE

A Philosophical Issue about Probability
There is some debate about how to represent probability when an outcome has been determined but is unknown, such as if you have flipped a coin but not looked at it. Technically, any particular outcome has either happened or not. If it has happened, its probability of happening is 1 ; if it hasn't, its probability of happening is 0 . In statistics, an example of this type of situation is the construction of a 95% confidence interval, which was introduced in Chapter 5 and which we will study in detail in Chapters 10 and 11 . Before the sample is chosen, a probability statement makes sense. The probability is .95 that a sample will be selected for which the computed 95% confidence interval covers the truth. After the sample has been chosen, "the die is cast." Either the computed confidence interval covers the truth or it doesn't, although we may never know which is the case. That's why we say that we have 95% confidence that a computed interval is correct, rather than saying that the probability that it is correct is .95 .

Investigating Real-Life Questions

EXAMPLE 3.5 Describing Height and Handspan with a Regression Line In Figure 3.1 (p. 70), we saw that the relationship between handspan and height has a straight-line pattern. Figure 3.6 displays the same scatterplot as Figure 3.1, but now a regression line is shown that describes the average relationship between the two variables. We used statistical software (Minitab) to find the "best" line for this set of measurements. We will discuss the criterion for "best" later. For now, let's focus on what the line tells us about the data.

Figure 3.6 Regression line describing height and handspan

UPDATED! Case Studies apply statistical ideas to intriguing news stories. As the Case Studies are developed, they model the statistical reasoning process.

CASE STUDY 5.2 No Opinion of Your Own? Let Politics Decide

This is an excellent example of how people will respond to survey questions when they do not know about the issues, and how the wording of questions can influence responses. In 1995, the Washington Post decided to expand on a 1978 poll taken in Cincinnati, Ohio, in which people were asked whether they "favored or opposed repealing the 1975 Public Affairs Act" (Morin, 1995, p. 36). There was no such act, but about one-third of the respondents expressed an opinion about it.

In February 1995, the Washington Post added this fictitious question to its weekly poll of 1000 randomly selected respondents: "Some people say the 1975 Public Affairs Act should be repealed. Do you agree or disagree that it should be repealed?" Almost half (43%) of the sample expressed an opinion, with 24% agreeing that it should be repealed and 19% disagreeing!

The Post then tried another trick that produced even more disturbing results. This time, they polled two separate groups of

500 randomly selected adults. The first group was asked: "President Clinton [a Democrat] said that the 1975 Public Affairs Act should be repealed. Do you agree or disagree?" The second group was asked: "The Republicans in Congress said that the 1975 Public Affairs Act should be repealed. Do you agree or disagree?" Respondents were also asked about their party affiliation.

Overall, 53% of the respondents expressed an opinion about repealing this fictional act! The results by party affiliation were striking: For the Clinton version, 36% of the Democrats but only 16% of the Republicans agreed that the act should be repealed. For the "Republicans in Congress" version, 36\% of the Republicans but only 19\% of the Democrats agreed that the act should be repealed. In April 2013, the Huffington Post repeated this poll, replacing "Clinton" with "Obama." The results were similar. (Sources: http://www.huffingtonpost.com/2013/04/11/ survey-questions-fiction_n_2994363.html and http://big.assets. huffingtonpost.com/toplines_full.pdf)

Original Journal Articles for many of the Examples and Case Studies can be found on the companion website on CourseMate, http://www.cengage. com/statistics/Utts5e. By reading the original, you are given the opportunity to learn much more about how the research was conducted, what statistical methods were used, and what conclusions the original researchers drew.

Basic Exercises, comprising 25\% of all exercises found in the text, focus on practice and review. These exercises, found under the header Skillbuilder Exercises and appearing at the beginning of each exercise section, complement the conceptual and data-analysis exercises. Basic exercises give you ample practice for these key concepts.

EXAMPLE 2.2 Lighting the Way to Nearsightedness A survey of 479 children found that thos Read the original source on the who had slept with a nightlight or in a fully lit room before the age of 2 had a higher Read the original source on the
companion website, http://www
incidence of nearsightedness (myopia) later in childhood (Sacramento Bee, May 13, .cengage.com/statistics/Utts5e. 1999, pp. A1, A18). The raw data for each child consisted of two categorical variables, each with three categories. Table 2.3 gives the categories and the number of children falling into each combination of them. The table also gives percentages (relative frequencies) falling into each eyesight category, where percentages are computed within each nighttime lighting category. For example, among the 172 children who slept in darkness, about $90 \%(155 / 172=.90)$ had no myopia.

Getting Practice

Exercises

Bold exercises have answers in the back of the text

Note: Many of these exercises will be repeated in later chapters in which the relevant material is covered in more detail.

Skillbuilder Exercises

1.1 Refer to the data and five-number summaries given in Case Study 1.1. Give a numerical value for each of the following.
a. The fastest speed driven by anyone in the class.
b. The slowest of the "fastest speeds" driven by a male.
c. The speed for which one-fourth of the women had driven at that speed or faster.
d. The proportion of females who had driven 89 mph or faster
e. The number of females who had driven 89 mph or faster.
1.2 A five-number summary for the heights in inches of the women who participated in the survey in Case Study 1.1 is as shown:

	Female Helghts (Inches)		
Medlan	65		
Quartiles	63.5		67.5
Extremes	59		71

a. What is the median height for these women?
b. What is the range of heights-that is, the difference in heights between the shortest woman and the tallest woman?
c. What is the interval of heights containing the shortest one-fourth of the women?
d. What is the interval of heights containing the middle one-half of the women?
1.3 In recent years, Vietnamese American women have had the highest rate of cervical cancer in the country. Suppose that among 200,000 Vietnamese American women, 86 developed cervical cancer in the past year.
a. Calculate the rate of cervical cancer for these women.
b. What is the estimated risk of developing cervical cancer for Vietnamese American women in the next year?
c. Explain the conceptual difference between the rate and the risk, in the context of this example.
1.4 The risk of getting lung cancer at some point in one's life for men who have never smoked is about 13 in 1000 . The risk for men who smoke is just over 13 times the risk for nonsmokers. (Source: Villenueve and Lau, 1994)
a. What is the base rate for lung cancer in men over a lifetime?
b. What is the approximate lifetime risk of getting lung cancer for men who smoke?

Relevant conceptual and data analysis Exercises have been added and updated throughout the text. All exercises are found at the end of each chapter, with corresponding exercise sets written for each section and chapter. You will find well more than 1500 exercises, allowing for ample opportunity to practice key concepts.

Answers to Selected Odd-

 Numbered Exercises, indicated by bold numbers in the Exercise sections, have final answers or partial solutions found in the back of the text for checking your answers and guiding your thinking on similar exercises. Most oddnumbered exercises have answers in back of the book.
Answers to Selected Odd-Numbered Exercises

The following are partial or complete answers to the exercises numbered in bold in the text.

Chapter 1

```
1.1 a. }150\textrm{mph.}\mathrm{ b. }55\textrm{mph.}.c.95\textrm{mph.}\mathrm{ d. 1/2. e. }5
    1.3 a. .00043. b. .00043. c. Rate is based on past data; risk use
        past data to predict an individual's likelihood of developing
        cervical cancer.
    cervical cancer.
        l a. All teens in the U.S. at the time the poll was taken.
    1.7 a. All adults in the U.S. at the time the poll was taken.
        b. }\frac{1}{\sqrt{}{1048}}=.031 \mathrm{ or 3.1%. c. }30.9%\mathrm{ to }37.1%
    1.9 a. 400.
1.11 a. Self-selected or volunteer sample. b. No; readers with strong
        opinions will respond.
```

2.7 Sex and self-reported fastest ever driven speed. b. Students in a statistics class. c. Answer depends on whether interest is in this class only or in a larger group represented by this class.
2.9 Population summary if we restrict interest to fiscal year 1998. Sample summary if 1998 value is used to represent errors in other years.
2.11 a. Categorical. b. Quantitative. c. Quantitative. d. Categorical.
2.15 a. Explanatory is score on the final exam; response is final course grade. b. Explanatory is gender; response is opinion about the death penalty.
2.17 a. Not continuous. b. Continuous. c. Continuous.

Technology for Developing Concepts and Analyzing Data

New for the fifth edition, available via Aplia, is MindTap ${ }^{\text {TM }}$ Reader, Cengage Learning's next-generation eBook. MindTap Reader provides robust opportunities for students to annotate, take notes, navigate, and interact with the text (e.g., ReadSpeaker). Annotations captured in MindTap Reader are automatically tied to the Notepad app, where they can be viewed chronologically and in a cogent, linear fashion. Instructors also can edit the text and assets in the Reader, as well as add videos or URLs.

Go to http://www.cengage.com/mindtap for more information.
Aplia $^{\text {™ }}$ (ISBN: 9781285773100) is an online interactive learning solution that improves comprehension and outcomes by increasing student effort and engagement. Founded by a professor to enhance his own courses, Aplia provides automatically graded assignments with detailed, immediate explanations on every question and innovative teaching materials. Aplia's easy-to-use system has been used by more than $1,000,000$ students at over 1800 institutions.

Companion Website

CENGAGE lbraiin

To access additional course materials and companion resources, please visit http:// www.cengage.com/statistics/Utts5e or www.cengagebrain.com. At the CengageBrain. com home page, search for the ISBN of your title (from the back cover of your book)
using the search box at the top of the page. This will take you to the product page where the following free companion resources can be found:

- Interactive teaching and learning tools including:
- Conceptual applets to accompany almost all chapters, with instructions and exercises
- Flashcards
- Videos of examples from throughout the text
- and more
- Activities manual with engaging activities to accompany every chapter (except Chapter 17)
- Step-by-Step technology manuals for TI-84 Plus calculators, Microsoft Excel, Minitab ${ }^{\circ}$, SPSS ${ }^{*}$, and JMP
- Downloadable datasets (in ASCII as well as the native file formats for each software and calculator model covered by the Step-by-Step manuals)
- Original journal articles for select Examples and Case Studies, where you can learn much more about how the research was conducted, what statistical methods were used, and what conclusions the original researchers drew

Step-by-Step technology manuals, written specifically for Mind on Statistics, Fifth Edition, walk you through the statistical software and graphing calculator-step by step. You will find manuals for:

- TI-84 Calculators
- Microsoft Excel
- Minitab
- SPSS ${ }^{\circ}$
- JMP

Note: These technology manuals are available in electronic formats. Instructors, contact your sales representative to find out how these manuals can be custom published for your course.

JMP is a statistics software for Windows and Macintosh computers from SAS, the market leader in analytics software and services for industry. JMP Student Edition is a streamlined, easy-to-use version that provides all the statistical analysis and graphics covered in this textbook. Once data is imported, students will find that most procedures require just two or three mouse clicks. JMP can import data from a variety of formats, including Excel and other statistical packages, and you can easily copy and paste graphs and output into documents.

JMP also provides an interface to explore data visually and interactively, which will help your students develop a healthy relationship with their data, work more efficiently with data, and tackle difficult statistical problems more easily. Because its output provides both statistics and graphs together, the student will better see and understand the application of concepts covered in this book as well. JMP Student Edition also contains some unique platforms for student projects, such as mapping and scripting. JMP functions in the same way on both Windows and Mac platforms and instructions contained with this book apply to both platforms.

Access to this software is available with new copies of the book. Students can purchase JMP standalone via CengageBrain.com or www.jmp.com/getse.

Minitab, Excel, TI-84, and SPSS Tips in the text offer key details on the use of technology.

MINITAB TIP Computing a Chi-Square Test for a Two-Way Table

- If the raw data are stored in columns of the worksheet, use Stat > Tables > Cross Tabulation and Chi-Square. Specify a categorical variable in the "For rows" box and a second categorical variable in the "For columns" box. Then click the Chi-Square button and select "Chi-Square analysis."
- If the data are already summarized into counts, enter the table of counts (excluding totals) into columns of the worksheet, and then use Stat > Tables $>$ Chi-Square Test (Table in Worksheet). In the dialog box, specify the columns that contain the counts.

EXCEL TIP The p-value can also be computed by using Microsoft Excel. The function CHIDIST(x, df) provides the p-value, where x is the value of the chi-square statistic and df is a number called "degrees of freedom," which will be explained later in this book. The formula for df is (\# of rows -1)(\# of columns -1). For instance, corresponding to the information in Example 4.13, $\mathrm{df}=(2-1)(2-1)=1$, and the p-value is CHIDIST $(7.659,1)=.005649$, or about .006 as given by Minitab.

Tools for Review

Key Terms at the end of each chapter, organized by section, can be used as a "quick-finder" and as a review tool.

UPDATED! In Summary boxes
serve as a useful study tool, appearing at appropriate points to enhance key concepts and calculations. More In Summary boxes have been added for this edition.

Key Terms

Section 3.1
scatterplot, 70, 74
explanatory variable, 70
response variable, 70 dependent variable, 70
y variable, 70
x variable, 70
positive association, $70,71,74$
linear relationship, 70, 71, 74 negative association, 71, 74 nonlinear relationship, 71 curvilinear relationship, 71, 74 outlier, 73
Section 3.2
regression analysis, 74
regression equation, 74, 75, 76 prediction, 75
regression line, 74, 75, 76, 82 simple linear regression, 75 slope of a straight line, $75,77,82$ intercept of a straight line, 75,77 y-intercept, 75, 77 predicted $y(\hat{y}), 76$ estimated $y, 76$ predicted value, 76,82 deterministic relationship, 77 statistical relationship, 77 prediction error, 79, 82 residual, 79, 82 least squares, 80 least squares line, 80 least squares regression, 80,82 sum of squared errors (SSE), 80, 88

Section 3.3
correlation, 82
Pearson product moment correlation, 82 correlation coefficient, 82, 89 squared correlation $\left(r^{2}\right), 86$ proportion of variation explained by $x, 86$ sum of squares total (SSTO), 87 sum of squares due to regression (SSR), 88

Section 3.4
extrapolation, 90
interpolation, 90
influential observations, 90
Section 3.5
causation versus correlation, 94-95

In summary Bell-Shaped Distributions and Standard Deviation

- The standard deviation measures the variability among data values.
- The formula for sample standard deviation is $s=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$
- For bell-shaped data, about 68% of the data values fall within 1 standard deviation of the mean either way, about 95% fall within 2 standard deviations of the mean either way, and about 99.7% fall within 3 standard deviations of the mean either way.
A standardized score, also called a z-score, measures how far a value is from the mean in terms of standard deviations.

In Summary Boxes

Numerical Summaries of Quantitative Variables, 44 Possible Reasons for Outliers and Reasonable Actions, 46 Bell-Shaped Distributions and Standard Deviation, 52

Tools for Active Learning

To access additional course materials and companion resources, please visit www.cengagebrain.com. At the CengageBrain.com home page, search for the ISBN of your title (from the back cover of your book) using the search box at the top of the page. This will take you to the product page where free companion resources can be found.

The Student Solutions Manual (ISBN 9781285770208), prepared by Jessica M. Utts and Robert F. Heckard, provides worked-out solutions to most of the odd-numbered problems in the text.

The online Activities Manual, written by Jessica M. Utts and Robert F. Heckard, includes a variety of activities for students to explore individually or in teams. These activities guide students through key features of the text, help them understand statistical concepts, provide hands-on data collection and interpretation team-work, include exercises with tips incorporated for solution strategies, and provide bonus dataset activities. Information can be found on the companion website on CourseMate.

Instructor Resources: Tools for Assessment

Companion Website: The companion website at http://www.cengage.com/Utts5e contains a variety of resources.

- Microsoft ${ }^{\circ}$ PowerPoint ${ }^{\ominus}$ lecture slides for all chapters
- Figures from the book
- Data sets in a variety of formats
- Technology guides for a variety of programs
- Course outlines and syllabi
- Suggestions for class projects for Chapters 2 to 16
- Suggested discussions for the Thought Questions located throughout the text
- Supplemental Topics: Chapters S. 1 to S. 5 and Supplemental Topic solutions
- List of applications and methods
- Index of exercises by subject matter
- JoinIn ${ }^{\mathrm{TM}}$ on TurningPoint ${ }^{\ominus}$ is also available on the PowerLecture and offers instructors text-specific content for electronic response systems. You can transform your classroom and assess students' progress with instant in-class quizzes and polls. TurningPoint software lets you pose book-specific questions and display students' answers seamlessly within Microsoft PowerPoint lecture slides, in conjunction with a choice of "clicker" hardware. Enhance how your students interact with you, your lecture, and each other.

Solution Builder: This online instructor database offers complete worked solutions to all exercises in the text, allowing you to create customized, secure solutions printouts (in PDF format) matched exactly to the problems you assign in class. Access available via www. cengage.com/solutionbuilder or the PowerLecture CD (see PowerLecture description).

Cengage Learning Testing Powered by Cognero is a flexible, online system that allows you to:

- Author, edit, and manage test bank content from multiple Cengage Learning solutions
- Create multiple test versions in an instant
- Deliver tests from your LMS, your classroom or wherever you want

A Note to Instructors

The entire Mind on Statistics learning package has been informed by the recommendations put forth by the ASA/MAA Joint Curriculum Committee and the GAISE (Guidelines for Assessment and Instruction in Statistics Education) College Report,
for which Jessica Utts was one of the authors. Each of the pedagogical features and ancillaries listed in the section entitled "Student Resources: Tools for Expanded Learning" and "Instructor Resources: Tools for Assessment" has been categorized by suggested use to provide you with options for designing a course that best fits the needs of your students.

Acknowledgments

We thank William Harkness, Professor of Statistics at Penn State University, for continued support and feedback throughout our careers and during the writing of this book, and for his remarkable dedication to undergraduate statistics education. Preliminary editions of Mind on Statistics, the basis for this text, were used at Penn State; the University of California, Davis; and Texas A \& M University, and we thank the many students who provided comments and suggestions on those and on subsequent editions. Thanks to Deb Niemeier, University of California, Davis, for suggesting that we add a supplemental chapter on Ethics (available on the companion website on CourseMate). We are indebted to Neal Rogness, Grand Valley State University, for help with the SPSS Tips, and Larry Schroeder and Darrell Clevidence, Carl Sandburg College, for help with the TI-84 Tips. At Penn State, Dave Hunter, Steve Arnold, and Tom Hettmansperger have provided many helpful insights. At the University of California, Davis, Rodney Wong has provided insights as well as material for some exercises and the test bank. We extend special thanks to George Pasles for providing hundreds of valuable suggestions for improving this edition of the book.

For providing datasets used in the book and available at the companion website on CourseMate, we thank Susan Jelsing, as well as William Harkness and Laura Simon from Penn State University.

The following reviewers offered valuable suggestions for this and previous editions:
Erica Bernstein, University of Hawaii at Hilo
Patricia M. Buchanan, Penn State University
Elizabeth Clarkson, Wichita State University
Ian Clough, University of Cincinnati-Clermont College
Patti B. Collings, Brigham Young University
James Curl, Modesto Junior College
Boris Djokic, Keiser University
Wade Ellis, West Valley College
Patricia Erickson, Taylor University
Linda Ernst, Mt. Hood Community College
Anda Gadidov, Kennesaw State University
Joan Garfield, University of Minnesota Jonathan Graham, University of Montana Jay Gregg, Colorado State University Brenda Gunderson, University of Michigan
Donnie Hallstone, Green River Community College
Glenn Hansen, University of Oklahoma
Donald Harden, Georgia State University
Sarai Hedges, University of Cincinnati
Rosemary Hirschfelder, University Sound
Sue Holt, Cabrillo Community College
Mortaza Jamshidian, California State University-Fullerton
Mark Johnson, University of Central Florida
Tom Johnson, North Carolina University
Yevgeniya Kleyman, University of Michigan
Danny Lau, Gainesville State College
Andre Mack, Austin Community College
Jean-Marie Magnier, Springfield Technical Community College
Suman Majumdar, University of Connecticut
D'Arcy Mays, Virginia Commonwealth
Megan Meece, University of Florida

Jack Osborn Morse Jr., University of Georgia
Emily Murphree, Miami University
Mary Murphy, Texas A \& M University
Helen Noble, San Diego State University
Thomas Nygren, Ohio State University
Wanda O'Connor, Austin Community College
Jamis Perrett, Texas A\&M University
Thomas J. Pfaff, Ithaca College
Nancy Pfenning, University of Pittsburgh Joel Pitt, Georgian Court University
Jennifer Lewis Priestley, Kennesaw State University
John Racquet, State University of New York at Albany
Lawrence Ries, University of Missouri
David Robinson, St. Cloud State University
Neal Rogness, Grand Valley State University
Kelly Sakkinen, Lansing Community College
Heather Sasinouska, Clemson University
Kirk Steinhorst, University of Idaho
Robert Talbert, Franklin College
Mary Ann Teel, University of North Texas
Gwen Terwilliger, University of Toledo
Ruth Trygstad, Salt Lake Community College
Sasha Verkhovtseva, Anoka-Ramsey Community College
Robert Alan Wolf, University of San Francisco
Our sincere appreciation and gratitude also goes to Molly Taylor, Alison Eigel Zade, Jay Campbell, and the staff at Cengage Learning, as well as Mike Ederer of Graphic World Publishing Services, who oversaw the development and production of the fifth edition. We also wish to thank Carolyn Crockett and Danielle Derbenti, without whom this book could not have been written, and Martha Emry who kept us on track throughout the editing and production of the first three editions of the book. Finally, for their support, patience, and numerous prepared dinners, we thank our families and friends, especially Candace Heckard, Molly Heckard, Wes Johnson, Claudia Utts-Smith, and Dennis Smith.

Jessica M. Utts
Robert F. Heckard

1

Is a male or a female more likely to be behind the wheel of this speeding car?

See Case Study 1.1 (p. 2)

Statistics Success Stories and Cautionary Tales

"The eight stories in this chapter are meant to bring life to the term statistics. After reading these stories, if you think the subject of statistics is lifeless or gruesome, check your pulse!"

Let's face it. You're a busy person. Why should you spend your time learning about statistics? In this chapter, we give eight examples of situations in which statistics provide either enlightenment or misinformation. After reading these examples, we hope you will agree that learning about statistics may be interesting and useful.

Each of the stories in this chapter illustrates one or more concepts that will be developed in this book. These concepts are given as "the moral of the story" after a case is presented. Definitions of some terms used in the story also are provided following each case. By the time you have read all of these stories, you already will have an overview of what statistics is all about.

1.1 What Is Statistics?

When you hear the word statistics you probably think of lifeless or gruesome numbers, such as the population of your state or the number of violent crimes committed in your city last year. The word statistics, however, actually is used to mean two different things. The better-known definition is that statistics are numbers measured for some purpose. A more complete definition, and the one that forms the substance of this book, is the following:

DEFINITION
\qquad
Statistics is a collection of procedures and principles for gathering data and analyzing information to help people make decisions when faced with uncertainty.

The eight stories in this chapter are meant to bring life to this definition. After reading them, if you think the subject of statistics is lifeless or gruesome, check your pulse!

1.2 Eight Statistical Stories with Morals

The best way to gain an understanding of some of the ideas and methods used in statistical studies is to see them in action. As you read each of the eight stories presented in this section, think about how the situation was used to extract information from data. The methods and ideas used differ for each of these stories, and together they will give you an excellent overview of why it is useful to study statistics. To help you understand some basic statistical principles, each case study is accompanied by a "moral of the story" and by some definitions. All of the ideas and definitions will be discussed in greater detail in subsequent chapters.

case study $1.1 \quad$ Who Are Those Speedy Drivers?

A survey taken in a large statistics class at Penn State University contained the question "What's the fastest you have ever driven a car? \qquad mph." The data provided by the 87 males and 102 females who responded are listed here.
Males: 110109901401051501201101109011595145140 11010585951001151249510012514085120115105125 1028512011012011594125808514012092130125110 9011011095951101058010011013010510512090100 105100120100100801001201056012512010011595 110101801121201101151255590
Females: 80758380100100907595859085909012085 1001207585807085110857510595757090708285 10090759011080801101109575130951101108090 10590110751009011085908080855080100808080 9510090100958080508890908570903085858785 9085759010280100951108095908090
From these numbers, can you tell which sex tends to have driven faster and by how much? Notice how difficult it is to make sense of the data when you are simply presented with a list. Even if the numbers had been presented in numerical order, it would be difficult to compare the two groups.

Your first lesson in using statistics is how to formulate a simple summary of a long list of numbers. The dotplot shown in Figure 1.1 helps us see the pattern in the data. In the plot, each dot represents the response of an individual student. We can see that the men tend to claim a higher "fastest ever driven" speed than do the women.

The graph shows us a lot, and calculating some summary statistics will provide additional insight. There are a variety of ways to do so, but for this example, we examine a five-number summary of the data for males and females. The five numbers are the lowest value; the cut-off points for one-fourth, one-half, and three-fourths of the ordered data; and the highest value. The three middle values of the summary (the cutoff points for one-fourth, one-half, and three-fourths of the ordered data) are called the lower quartile, median, and upper quartile, respectively. Five-number summaries can be represented as shown in the table underneath Figure 1.1.

FIGURE 1.1 Responses to "What's the fastest you've ever driven?"

	Males			
(87 Students)			\quad	c
:---:				
(102 Students)				

Some interesting facts become immediately obvious from these summaries. By looking at the medians, you see that half of the men have driven 110 miles per hour or more, whereas the halfway point for the women is only 89 miles per hour. In fact, three-fourths of the men have driven 95 miles per hour or more, but only one-fourth of the women have done so. These facts were not at all obvious from the original lists of numbers.

Moral of the Story: Simple summaries of data can tell an interesting story and are easier to digest than long lists.

Definitions: Data is a plural word referring to numbers or nonnumerical labels (such as male/female) collected from a set of entities (people, cities, and so on). The median of a numerical list of data is the value in the middle when the numbers are put in order. For an even number of entities, the median is the average of the middle two values. The lower quartile and upper quartile are (roughly) the medians of the lower and upper halves of the ordered data.

CASE STUDY 1.2 Safety in the Skies?

If you fly often, you may have been relieved to see the New York Times headline on October 1, 2007, proclaiming "Fatal airline crashes drop 65\%" (Wald, 2007). And you may have been dismayed if you had seen an earlier headline in USA Today that read, "Planes get closer in midair as traffic control errors rise" (Levin, 1999). The details were even more disturbing: "Errors by air traffic controllers climbed from 746 in fiscal 1997 to 878 in fiscal 1998, an 18\% increase."

So, are the risks of a fatal airline crash or an air traffic control error something that should be a major concern for airline passengers? Don't cancel your next vacation yet. A look at the statistics indicates that the news is actually pretty good! The low risk becomes obvious when we are told the base rate or baseline risk for these problems. According to the New York Times article, "the drop in the accident rate [from 1997 to 2007] will be about 65\%, to one fatal accident in about 4.5 million departures, from 1 in nearly 2 million in 1997." And according to the 1999 USA Today story, "The errors per million flights handled by controllers climbed from 4.8 to 5.5." So the rate of fatal accidents changed from about 1 in 2 million departures in 1997 to 1 in 4.5 million departures in 2007, and the ominous rise in air traffic controller errors in 1998 still led to a very low rate of only 5.5 errors per million flights.

Fortunately, the rates of these occurrences were provided in both stories. This is not always the case in news reports of
changes in rates or risk. For instance, an article may say that the risk of a certain type of cancer is doubled if you eat a certain unhealthful food. But what good is that information unless you know the actual risk? Doubling your chance of getting cancer from 1 in a million to 2 in a million is trivial, but doubling your chance from 1 in 50 to 2 in 50 is not.

Moral of the Story: When you read about the change in the rate or risk of occurrence of something, make sure you also find out the base rate or baseline risk.

Definitions: The rate at which something occurs is simply the number of times it occurs per number of opportunities for it to occur. In fiscal year 1998, the rate of air traffic controller errors was 5.5 per million flights. The risk of a bad outcome in the future can be estimated using the past rate for that outcome, if it is assumed the future will be like the past. Based on recent data, the estimated risk of a fatal accident for any given flight is 1 in 4.5 million, which is $1 / 4,500,000$ or about .00000022 . The base rate or baseline risk is the rate or risk at a beginning time period or under specific conditions. For instance, the base rate of fatal airline crashes from which the 65% decrease for 2007 was calculated was about 1 crash per 2 million flights for fiscal year 1997.

CASE STUDY 1.3 Did Anyone Ask Whom You've Been Dating?

In the late 1990s interracial dating was a sensitive topic. So it was newsworthy to learn that "According to a new USA Today/ Gallup Poll of teenagers across the country, 57% of teens who go out on dates say they've been out with someone of another race or ethnic group" (Peterson, 1997). That was over half of the dating teenagers, so it was natural for the headline in the Sacramento Bee to read, "Interracial dates common among today's teenagers." The article contained other information as well, such as "In most cases, parents aren't a major obstacle. Sixty-four percent of teens say their parents don't mind that they date interracially, or wouldn't mind if they did."

There were millions of teenagers in the United States whose experiences appeared to be being reflected in this story. How could the polltakers manage to ask so many teenagers these questions? The answer is that they didn't. The article states that "the results of the new poll of 602 teens, conducted Oct. 13-20, reflect the ubiquity of interracial dating today." They asked only 602 teens? Could such a small sample possibly tell us anything about the millions of teenagers in the United States? The answer is "yes" if those teens constituted a random sample from the population of interest.

The featured statistic of the article is that " 57 percent of teens who go out on dates say they've been out with someone of another race or ethnic group." Only 496 of the 602 teens in the poll said that they date, so the 57% value is actually a percentage

FIGURE 1.2 Population and sample for the survey.
based on 496 responses. In other words, the pollsters were using information from only 496 teenagers to estimate something about all teenagers who date. Figure 1.2 illustrates this situation.

How accurate could this sample survey possibly be? The answer may surprise you. The results of this poll are accurate to within a margin of error of about 4.5%. As surprising as it may seem, the true percentage of all dating teens in the United States at that time who had dated interracially is reasonably likely to be within 4.5% of the reported percentage that's based only on the 496 teens asked! We'll be conservative and round the 4.5% margin of error up to 5%. At the time the poll was taken, the percentage of all dating teenagers in the United States that would say they had dated someone of another race or ethnic group was likely to be in the range $57 \% \pm 5 \%$, or between 52% and 62%.
(continued)
(The symbol \pm is read "plus and minus" and means that the value on the right should be added to and subtracted from the value on the left to create an interval.)

Polls and sample surveys are frequently used to assess public opinion and to estimate population characteristics such as the percent of teens who have dated interracially or the proportion of voters who plan to vote for a certain candidate. Many sophisticated methods have been developed that allow pollsters to gain the information they need from a very small number of individuals. The trick is to know how to select those individuals. In Chapter 5, we examine a number of other strategies that are used to ensure that sample surveys provide reliable information about populations.

Moral of the Story: A representative sample of only a few thousand, or perhaps even a few hundred, can give reasonably accurate information about a population of many millions.

Definitions: A population is a collection of all individuals about which information is desired. The "individuals" are usually people, but could also be schools, cities, pet dogs, agricultural fields, and
so on. A random sample is a subset of the population selected so that every individual has a specified probability of being part of the sample. (Often, but not always, it is specified that every individual has the same chance of being selected for the sample.) In a poll or sample survey, the investigators gather opinions or other information from each individual included in the sample. The margin of error for a properly conducted survey is a number that is added to and subtracted from the sample information to produce an interval that is 95% certain to contain the true value for the population. In the most common types of sample surveys, the margin of error is approximately equal to 1 divided by the square root of the number of individuals in the sample.

Hence, a sample of 496 teenagers who have dated produces a margin of error of about $1 / \sqrt{496}=.045$, or about 4.5%. In some polls the margin of error is called the margin of sampling error to distinguish it from other sources of errors and biases that can distort the results. The next Case Study illustrates a common source of bias that can occur in surveys, discussed more fully in Chapter 5.

CASE STUDY 1.4 Who Are Those Angry Women?

A well-conducted survey can be very informative, but a poorly conducted one can be a complete disaster. As an extreme example, Moore (1997, p. 11) reports that Shere Hite sent questionnaires to 100,000 women asking about love, sex, and relationships for her book Women and Love (1987). Only 4.5\% of the women responded, and Hite used those responses to write her book. As Moore notes, "The women who responded were fed up with men and eager to fight them. For example, 91% of those who were divorced said that they had initiated the divorce. The anger of women toward men became the theme of the book." Do you think that women who were angry with men would be likely to answer questions about love relationships in the same way as the general population of women?

The Hite sample exemplifies one of the most common problems with surveys: The sample data may not represent the population. Extensive nonparticipation (nonresponse) from a random sample, or the use of a self-selected (i.e., a volunteer) sample, will probably produce biased results. Those who voluntarily respond to
surveys tend to care about the issue and therefore have stronger and different opinions than those who do not respond.

Moral of the Story: An unrepresentative sample, even a large one, tells you almost nothing about the population.

Definitions: Nonparticipation bias (also called nonresponse bias) can occur when many people who are selected for the sample either do not respond at all or do not respond to some of the key survey questions. This may occur even when an appropriate random sample is selected and contacted. The survey is then based on a nonrepresentative sample, usually those who feel strongly about the issues. Some surveys don't even attempt to contact a random sample but instead ask anyone who wishes to respond to do so. Magazines, television stations, and Internet websites routinely conduct this kind of poll, and those who respond are called a self-selected sample or a volunteer sample. In most cases, this kind of sample tells you nothing about the larger population at all; it tells you only about those who responded.

CASE STUDY $1.5 \quad$ Does Prayer Lower Blood Pressure?

News headlines are notorious for making one of the most common mistakes in the interpretation of statistical studies: jumping to unwarranted conclusions. A headline in USA Today read, "Prayer can lower blood pressure" (Davis, 1998). The story that followed continued the possible fallacy it began by stating, "Attending religious services lowers blood pressure more than tuning into religious TV or radio, a new study says." The words
"attending religious services lowers blood pressure" imply a direct cause-and-effect relationship. This is a strong statement, but it is not justified by the research project described in the article.

The article was based on an observational study conducted by the U.S. National Institutes of Health, which followed 2391 people aged 65 or older for 6 years (Figure 1.3). The article described one of the study's principal findings: "People who
attended a religious service once a week and prayed or studied the Bible once a day were 40% less likely to have high blood pressure than those who don't go to church every week and prayed and studied the Bible less" (Davis, 1998). So the researchers did observe a relationship, but it's a mistake to think that this justifies the conclusion that prayer actually causes lower blood pressure.

When groups are compared in an observational study, the groups usually differ in many important ways that may

FIGURE 1.3 An observational study in case study 1.5. Researchers survey religious activity and compare blood pressure of frequent and not-frequent activity group.
contribute to the observed relationship. In this example, people who attended church and prayed regularly may have been less likely than the others to smoke or to drink alcohol. These could affect the results because smoking and alcohol use are both believed to affect blood pressure. The regular church attendees may have had a better social network, a factor that could lead to reduced stress, which in turn could reduce blood pressure. People who were generally somewhat ill may not have been as willing or able to go out to church. We're sure you can think of other possibilities for confounding variables that may have contributed to the observed relationship between prayer and lower blood pressure.
Moral of the Story: Cause-and-effect conclusions cannot generally be made on the basis of an observational study.
Definitions: An observational study is one in which participants are merely observed and measured. Comparisons based on observational studies are comparisons of naturally occurring groups. A variable is a characteristic that differs from one individual to the next. It may be numerical, such as blood pressure, or it may be categorical, such as whether or not someone attends church regularly. A confounding variable is a variable that is not the main concern of the study but may be partially responsible for the observed results.
(Source: International Journal of Psychiatry in Medicine by Koenig, H.G., L.K. George, J.C. Hays, and D.B. Larson. [See p. 701 for complete credit.])

case study 1.6 Does Aspirin Reduce Heart Attack Rates?

Read the original source on the companion website, http://www .cengage.com/statistics/Utts5e.
In 1988, the Steering Committee of the Physicians' Health Study Research Group released the results of a 5-year randomized experiment conducted using 22,071 male physicians between the ages of 40 and 84 . The purpose of the experiment was to determine whether or not taking aspirin reduces the risk of a heart attack. The physicians had been randomly assigned to one of the two treatment groups. One group took an ordinary aspirin tablet every other day, while the other group took a placebo. None of the physicians knew whether he was taking the actual aspirin or the placebo. Figure 1.4 illustrates the design of this experiment.

FIGURE 1.4 Randomized experiment for case study 1.6. Physicians were assigned to regularly take either aspirin or a placebo.

Table 1.1 The Effect of Aspirin on Heart Attacks

Treatment	Heart Attacks	Doctors in Group	Attacks per 1000 Doctors
Aspirin	104	11,037	9.42
Placebo	189	11,034	17.13

The results, shown in Table 1.1, support the conclusion that taking aspirin does indeed help to reduce the risk of having a heart attack. The rate of heart attacks in the group taking aspirin was only about half the rate of heart attacks in the placebo group. In the aspirin group, there were 9.42 heart attacks per 1000 participating doctors, while in the placebo group, there were 17.13 heart attacks per 1000 participants.

Because the men in this experiment were randomly assigned to the two conditions, other important risk factors such as age, amount of exercise, and dietary habits should have been similar for the two groups. The only important difference between the two groups should have been whether they took aspirin or a placebo. This makes it possible to conclude that taking aspirin actually caused the lower rate of heart attacks for that group. In a later chapter, you will learn how to determine that the difference seen in this sample is statistically significant. In other words, the observed sample difference probably reflects a true difference within
the population.
(continued)

To what population does the conclusion of this study apply? The participants were all male physicians, so the conclusion that aspirin reduces the risk of a heart attack may not hold for the general population of men. No women were included, so the conclusion may not apply to women at all. More recent evidence, however, has provided additional support for the benefit of aspirin in broader populations.

Moral of the Story: Unlike with observational studies, cause-and-effect conclusions can generally be made on the basis of randomized experiments.

Definitions: A randomized experiment is a study in which treatments are randomly assigned to participants. A treatment
is a specific regimen or procedure assigned to participants by the experimenter. A random assignment is one in which each participant has a specified probability of being assigned to each treatment. A placebo is a pill or treatment designed to look just like the active treatment but with no active ingredients. A statistically significant relationship or difference is one that is large enough to be unlikely to have occurred in the sample if there was no relationship or difference in the population.
(Source: New England Journal of Medicine, 1989 Jul 20; 321(3), 129-135. Final report on the aspirin component of the ongoing Physicians' Health Study. Steering Committee of the Physicians' Health Study Research Group. Copyright © 1989 Massachusetts Medical Society. All rights reserved.)

CASE STUDY 1.7 Does the Internet Increase Loneliness and Depression?

It was big news. Researchers at Carnegie Mellon University had found that "greater use of the Internet was associated with declines in participants' communication with family members in the household, declines in size of their social circle, and increases in their depression and loneliness" (Kraut et al., 1998, p. 1017). An article in the New York Times reporting on this study was titled "Sad, lonely world discovered in cyberspace" (Harmon, 1998). The study included 169 individuals in 73 households in Pittsburgh, Pennsylvania, who were given free computers and Internet service in 1995, when the Internet was still relatively new. The participants answered a series of questions at the beginning of the study and either 1 or 2 years later, measuring social contacts, stress, loneliness, and depression. The New York Times reported:

In the first concentrated study of the social and psychological effects of Internet use at home, researchers at Carnegie Mellon University have found that people who spend even a few hours a week online have higher levels of depression and loneliness than they would if they used the computer network less frequently. . . . it raises troubling questions about the nature of "virtual" communication and the disembodied relationships that are often formed in cyberspace.
(Source: "Sad, Lonely World Discovered in Cyberspace," by A. Harmon, New York Times, August 30, 1998, p. A3. Reprinted with permission of the New York Times Company.)

Given these dire reports, one would think that using the Internet for a few hours a week is devastating to one's mental health. But a closer look at the findings reveals that the changes were actually quite small, though statistically significant. Internet use averaged 2.43 hours per week for participants. The number of people in the participants' "local social network" decreased from an average of 23.94 people to an average of 22.90 people, hardly a noticeable loss. On a scale from 1 to 5, self-reported loneliness decreased from an average of 1.99 to 1.89 (lower scores indicate greater loneliness). And on a scale from 0 to 3, self-reported depression dropped from an average of .73 to an average of . 62 (lower scores indicate higher depression).

The New York Times did report the magnitude of some of the changes, noting for instance that "one hour a week on the

Internet was associated, on average, with an increase of .03 , or 1% on the depression scale." But the attention the research received masked the fact that the impact of Internet use on depression, loneliness, and social contact was actually quite small, and thus may not have been of much practical significance.

As a follow-up to this study, in July 2001, USA Today (Elias, 2001) reported that in continued research, the bad effects had mostly disappeared. The article, titled "Web use not always a downer: Study disputes link to depression," began with the statement "Using the Internet at home doesn't make people more depressed and lonely after all." However, the article noted that the lead researcher, Robert Kraut of Carnegie Mellon University, believes that the earlier findings were correct but that "the Net has become a more social place since the study began in 1995." His explanation for the change in findings is that "either the Internet has changed, or people have learned to use it more constructively, or both." Research on this topic continues to develop. A study released in February 2010 (Morrison and Gore, 2010) identified 18 "Internet addicted" individuals out of 1319 study participants. They found that the Internet addicts scored in the "moderately-toseverely depressed range" on a test called the Beck Depression Inventory, while an equivalent group of non-addicts scored "firmly in the non-depressed range." As the authors point out, it is not clear whether Internet use causes depression, depression causes more Internet use, or some other factors lead to abnormal scores in both for some people.

Moral of the Story: A statistically significant finding does not necessarily have practical significance or practical importance. When a study reports a statistically significant finding, find out the magnitude of the relationship or difference. A secondary moral to this story is that the implied direction of cause and effect may be wrong. In this case, it could be that people who were more lonely and depressed were more prone to using the Internet. And remember that, as the follow-up research makes clear, "truth" doesn't necessarily remain fixed across time. Any study should be viewed in the context of society at the time it was done.

CASE STUDY $1.8 \quad$ Did Your Mother's Breakfast Determine Your Sex?

Read the original source on the companion website, http://www .cengage.com/statistics/Utts5e.

You've probably heard that "you are what you eat," but did it ever occur to you that you might be who you are because of what your mother ate? A study published in 2008 by the British Royal Society seemed to find just that. The researchers reported that mothers who ate breakfast cereal prior to conception were more likely to have boys than mothers who did not (Mathews et al., 2008). But 9 months later, just enough time for the potential increased cereal sales to have produced a plethora of little baby boys, another study was published that dashed cold milk on the original claim (Young et al., 2009).

The dispute centered on something statisticians call multiple testing, which can lead to erroneous findings of statistical significance. The authors of the original study had asked 740 women about 133 different foods they might have eaten just before getting pregnant. They found that 59% of the women who consumed breakfast cereal daily gave birth to a boy, compared to only 43% of the women who rarely or never ate cereal (http:// www.cbsnews.com/stories/2008/04/22/health/webmd/main 4036102.shtml). The result was highly statistically significant, but almost none of the other foods tested showed a statistically significant difference in the ratio of male to female births.

As previously discussed, statistical significance is how statisticians assess whether a difference found in a sample, in this case of 740 women, is large enough to conclude that the difference is likely to represent more than just chance. But sometimes what looks like a statistically significant difference is actually a false positive-a difference that looks like it wasn't due to chance when it really was. The more differences that are tested, the more likely it is that one of them will be a false positive. The criticism by Young et al. was based on this idea. When 133 food items that in fact do not affect the sex of a baby are all tested, it is likely that at least one of them will show up as a false positive, showing a big enough difference
in the proportion of male to female births to be statistically significant when in fact the difference is due to chance.

The authors of the original study defended their work (Mathews et al., 2009). They noted that they only tested the individual food items after an initial test based on total preconception calorie consumption showed a difference in male and female births. They found that 56% of the mothers in the top third of calorie consumption had boys, compared with only 45% of the mothers in the bottom third of calorie consumption. That was one of only two initial tests they did; the other had to do with vitamin intake. With only two tests, it is unlikely that either of them would be a false positive. Unfortunately the media found the cereal connection to be the most interesting result in the study, and that's what received overwhelming publicity. The best way to resolve the debate, as in most areas of science, is to ask the same questions in a new study and see if the results are consistent. The authors of the original study have stated their intention to do that.

Moral of the Story: When you read about a study that found a relationship or difference, try to find out how many different things were tested. The more tests that are performed, the more likely it is that a statistically significant difference is a false positive that can be explained by chance. You should be especially wary if dozens of things are tested and only one or two of them are statistically significant.

Definitions: Multiple testing or multiple comparisons in statistics refers to the fact that researchers often test many different hypotheses in the same study. This practice may result in statistically significant findings by mistake, called false positive results. Sometimes this practice is called data snooping because researchers snoop around in their data until they find something interesting to report.

1.3 The Common Elements in the Eight Stories

The eight stories were meant to bring life to our definition of statistics. Let's consider that definition again:

Statistics is a collection of procedures and principles for gathering data and analyzing information to help people make decisions when faced with uncertainty.

Abstract

Think back over the stories. In each of them, data are used to make a judgment about a situation. This common theme is what statistics is all about. The stories should also help you realize that you can be misled by the use of data, and learning to recognize how that happens is one of the themes of this book.

The Discovery of Knowledge

Each story illustrates part of the process of discovery of new knowledge, for which statistical methods can be very useful. The basic steps in this process are as follows:

1. Asking the right question(s)
2. Collecting useful data, which includes deciding how much is needed
3. Summarizing and analyzing data, with the goal of answering the questions
4. Making decisions and generalizations based on the observed data
5. Turning the data and subsequent decisions into new knowledge

We'll explore these five steps throughout the book, concluding with a chapter on "Turning Information into Wisdom." We're confident that your active participation in this exploration will benefit you in your everyday life and in your future professional career.

In a practical sense, almost all decisions in life are based on knowledge obtained by gathering and assimilating data. Sometimes the data are quantitative, as when an instructor must decide what grades to give based on a collection of homework and exam scores. Sometimes the information is more qualitative and the process of assimilating it is informal, such as when you decide what you are going to wear to a party. In either case, the principles in this book will help you to understand how to be a better decision maker.

THOUGHT QUESTION 1.1 Think about a decision that you recently had to make. What "data" did you use to help you make the decision? Did you have as much information as you would have liked? How would you use the principles in this chapter to help you gain more useful information?*

in summary Some Important Statistical Principles

The "moral of the story" items for the case studies presented in this chapter give a good overview of many of the important ideas covered in this book. Here is a summary:

- Simple summaries of data can tell an interesting story and are easier to digest than long lists.
- When you read about the change in the rate or risk of occurrence of something, make sure you also find out the base rate or baseline risk.
- A representative sample of only a few thousand, or perhaps even a few hundred, can give reasonably accurate information about a population of many millions.
- An unrepresentative sample, even a large one, tells you almost nothing about the population.
- Cause-and-effect conclusions cannot generally be made on the basis of an observational study.
- Unlike with observational studies, cause-and-effect conclusions can generally be made on the basis of randomized experiments.
- A statistically significant finding does not necessarily have practical significance or importance. When a study reports a statistically significant finding, find out the magnitude of the relationship or difference.
- When you read about a study that found a relationship or difference, try to find out how many different things were tested. The more tests that are done, the more likely it is that a statistically significant difference is a false positive that can be explained by chance.
*HINT: As an example, how did you decide to live where you are living? What additional data, if any, would have been helpful?

Key Terms

Every term in this chapter is discussed more extensively in later chapters, so don't worry if you don't understand all of the terminology that has been introduced here. The following list indicates the page number(s) where the important terms in this chapter are introduced and defined.

Section 1.1

statistics, 1

Case Study 1.1

dotplot, 2
summary statistics, 2
five-number summary, 2
data, 2
median, 2
lower quartile, 2
upper quartile, 2
Case Study 1.2
rate, 3
risk, 3
base rate, 3
baseline risk, 3

Case Study 1.3
population, 3, 4
random sample, 3, 4
poll, 3, 4
sample survey, 3, 4
margin of error, 3, 4
(margin of) sampling error, 4
Case Study 1.4
nonparticipation bias, 4
nonresponse bias, 4
self-selected sample, 4
volunteer sample, 4
Case Study 1.5
observational study, 5
variable, 5
confounding variable,

Case Studies 1.6 and 1.7

randomized experiment, 5, 6
treatment, 5, 6
random assignment, 5, 6
placebo, 5, 6
statistically significant, 5, 6, 7
practical significance, 6
practical importance, 6

Case Study 1.8

multiple testing, 7
multiple comparisons, 7
false positive, 7
data snooping, 7

Exercises

Bold exercises have answers in the back of the text.
Note: Many of these exercises will be repeated in later chapters in which the relevant material is covered in more detail.

Skillbuilder Exercises

1.1 Refer to the data and five-number summaries given in Case Study 1.1. Give a numerical value for each of the following.
a. The fastest speed driven by anyone in the class.
b. The slowest of the "fastest speeds" driven by a male.
c. The speed for which one-fourth of the women had driven at that speed or faster.
d. The proportion of females who had driven 89 mph or faster.
e. The number of females who had driven 89 mph or faster.
1.2 A five-number summary for the heights in inches of the women who participated in the survey in Case Study 1.1 is as shown:

	Female Heights (inches)		
Median	65		
Quartiles	63.5		67.5
Extremes	59		71

a. What is the median height for these women?
b. What is the range of heights-that is, the difference in heights between the shortest woman and the tallest woman?
c. What is the interval of heights containing the shortest one-fourth of the women?
d. What is the interval of heights containing the middle one-half of the women?
1.3 In recent years, Vietnamese American women have had the highest rate of cervical cancer in the country. Suppose that among 200,000 Vietnamese American women, 86 developed cervical cancer in the past year.
a. Calculate the rate of cervical cancer for these women.
b. What is the estimated risk of developing cervical cancer for Vietnamese American women in the next year?
c. Explain the conceptual difference between the rate and the risk, in the context of this example.
1.4 The risk of getting lung cancer at some point in one's life for men who have never smoked is about 13 in 1000 . The risk for men who smoke is just over 13 times the risk for nonsmokers. (Source: Villenueve and Lau, 1994)
a. What is the base rate for lung cancer in men over a lifetime?
b. What is the approximate lifetime risk of getting lung cancer for men who smoke?

